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is the Gruneisen ratio. The additional temperature in-
crement at the same volume arising from shock com-
pression is T, — T's, where
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Entropy, Sp, can be expressed as a series in powers of
the volume compression, n=(1-V/V,):
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where the second derivative is evaluated for the initial
state on the isentrope or the R—H curve. If C, and I'/V
are assumed constant, Eqs. (17), (19), and (20) can be

combined to give
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where o is the thermal expansion coefficient, K is the
isothermal bulk modulus at (V,, 7,) and I, has been
evaluated by Eq. (18). For an R-H curve given by Eq.
(16), Eq. (21) becomes
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Coefficients of n* range from 10 to 100 for a variety of
solids, so the temperature increment from irreversible
shock heating is negligible for volume compressions of
a few percent.

The problem represented by Figs. 2 and 3 is not re-
alized in practice. Half-spaces do not exist, and uni-
form pressure cannot be instantly applied over a sur-
face. Limitations imposed by real conditions are dis-
cussed in Sec. III.
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C. Shock-wave stability

In general the R—H curve is not so simple as that
shown in Fig. 3. A more common type for a solid has a
cusp where elastic failure occurs, and a solid which
fails elastically and also transforms to a new phase
under pressure has two cusps, as shown in Fig. 4. In
such a case the simple wave structure of Fig. 2(b) no
longer applies. Instead the wave may consist of one,
two, or three shock fronts, each one separating uni-
form states, depending on location of cusps and the
magnitude of P,, Fig. 5. In that case the jump condi-
tions, Egs. (9)=(11), are written for the ith shock:

bi-ps =W -U™U-U™)/Visys (23)
1=Vy/Vi =W -Ul)/(Ut-Ut™), (24)
Ei=E; =(pi+pi™)Vi =V)/2, (25)

where pi, V;, U}, and E; are values of state variables
behind the shock; pi=', v,_,, Ui, andE;_, are values
aheadof it; and U} is its velocity of propagation.
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FIG. 4. R-H curve centered at (P,,V,) for a solid which fails
elastically at A and transforms to a new phase starting at B.

Division of the shock wave into multiple waves hinges
on questions of stability. Whether or not a given shock
wave configuration is stable can be simply expressed by
determining whether following shock waves will over-
take those in front (Rice ef al., 1958). For example, in
Fig. 6 are represented two shock waves in sequence.
The leading shock 8, is traveling with speed UV relative
to the material ahead of it, which is at rest. Material
between 8, and 8, is compressed to specific volume V,
and accelerated to particle velocity U§'). With respect
to this material the first shock speed is U{") - U{"). With
respect to this same material the second shock has
speed UP) -UM. I UP -U<Ul) -U§", the second
shock falls continually farther behind the first shock,
and the two-shock system is stable. If the inequality is
reversed, the second shock overtakes the first, forming
a single stable shock.

From Egs. (9) and (10) the equation for shock propa-
gation speed is obtained

WL =Up P =i, (P =pi™)/ (Vi = V) (26)
also
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Applying these equations to the two shocks of Fig. 6, we
see that the double shock is stable if
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FIG. 5. Parameters of a shock preceded by moving material.
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FIG. 6. Double shock configuration.

To see the meaning of this inequality, consider the
(p5,V) curve shown in Fig. 7 and suppose that the final
shock state (p{®),V,) of Fig. 6 is at B. The negative
slope of chord AB is given by the lhs of Inequality (28);
that of OA is given by the rhs. Since OA is steeper than
AB, Inequality (28) is satisfied and a double shock to
B, withbreak at 4, is stable. Chords like OA andA B of Fig.
T which connect initial and final states are sometimes
called “Rayleigh lines.” If the driving pressure p{*) lies
between O and A or above C, a single shock is stable.
If it lies between A and C, a double shock is stable.

The shock stability problem can be couched more fun-
damentally in terms of the curvature of isentropes for
a fluid medium (Bethe, 1942; Duvall, 1962). If

(8P /8V?),<0

in some region, then there exist initial and final states
for which a single shock wave is not stable. The gen-

eral theory of stability is complicated (Fowles, 1976),

but Inequality (28) is an adequate rule for practical ex-
perimental purposes.

D. Transformation thermodynamics

Gibbs (.192‘5) was among the earliest thermodynami-
cists to point out the utility of geometric representations
in thermodynamics. Such representations are particu-
larly appropriate for discussion of shock phenomena
since many important qualitative aspects of shock-wave
representation are related to topological features of
equation of state surfaces, without reference to particu-
lar analytical forms or numerical values. Some equi-
librium relations pertaining to shock-induced phase

FIG. 7. Stability considerations for a double shock.
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transformations are described in this section.
Consider only a material that retains its chemical
identity but can exist in two distinguishable physical
forms, e.g., red and black phosphorus. Consider fur-
ther that stress is limited to hydrostatic pressure.
Then there exists a Gibbs function for each phase

G,'(P, T)=E,'-'TS;+PV,‘, i=1,2, (29)

where §S; is specific entropy for phase i. The high-den-
sity phase will be referred to as “phase 2” throughout
this paper.

Equations (29) represent two surfaces in a three-di-
mensional space with coordinates G,P, T, where G =G,
for phase 1 and G, for phase 2. Transition between
phases occurs where the two surfaces are in contact.

If they intersect, the transition is first order and the
Clausius—-Clapeyron equation is the differential equation
of the curve of intersection projected on the P-T plane

dP/dT =(S,-S,)/(V,=V,)=AS/AV . (30)

The discontinuities in V and S arise from their identity
as derivatives of G

V =0G/8P, S=-8G/8T,

where the underlying surface represents the equilibrium
state. This is illustrated in Fig. 8, where G,(P, T,) and
G,(P, T,) are shown. G(P,T,) is the curve ABC.

If the two surfaces do not intersect, but are tangent
along a curve, the transition is second order and second
derivatives of G are discontinuous. Higher-order con-
tacts define higher-order transitions, but these are hard
to detect experimentally (Temperley, 1956). Our pri-
mary concern is with first-order transitions, though
second-order transitions will be discussed briefly in
Sec. V.

Discontinuities in V and S define a “mixed phase” re-
gion in P-V —T space where phases 1 and 2 coexist. The
mixed phase region is a cylindrical surface with gen-
eratrix normal to the P -7 plane. The phase diagram in
the P-T plane is the projection of this cylinder onto the
P-T plane. On the cylindrical surface Eq. (30) applies.
If phase 2 is the high-pressure phase, AV <0 and AS
may be either negative or positive. In the former case,
dP/dT>0; in the latter, dP/dT<0. These two equilib-
rium cases are illustrated in Figs. 9 and 11, respect-
ively. It can be seen from these figures that both cases
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FIG. 8. Gibbs functions for a first-order transition.



