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(17) 

where 

r= c: (:~)y' (18) 

is the Gruneisen ratio. The additional temperature in
crement at the same volume arising from shock com
pression is T D - T s, where 

InTD / Ts = LSD dS / Cy . 
So 

(19) 

Entropy, SD, can be expressed as a series in powers of 
the volume compression, '1'/ = (1 - V / Vo): 

SD-S=~1/3_- + ... V3 (B 2P) 
o 12To BV2 0 ' 

(20) 

where the second derivative is evaluated for the initial 
state on the isentrope or the R-H curve. H Cy and r / V 
are assumed constant, Eqs. (17), (19), and (20) can be 
combined to give 

- [ V~1/2 (B 2P) J InTD/ To-ro1/ 1 + 12aToKo BV2 0 + ... , (21) 

where a is the thermal expansion coefficient, Ko is the 
isothermal bulk modulus at (V 0' To) and r 0 has been 
evaluated by Eq. (18). For an R-H curve given by Eq. 
(16), Eq. (21) becomes 

InTD / T o= ro1/[1+ :;0: 1/2+ •.. J. (22) 

Coefficients of 1/2 range from 10 to 100 for a variety of 
solids, so the temperature increment from irreversible 
shock heating is negligible for volume compressions of 
a few percent. 

The problem represented by Figs. 2 and 3 is not re
alized in practice. Half-spaces do not exist, and uni
form pressure cannot be instantly applied over a sur
face. Limitations imposed by real conditions are dis
cussed in Sec. III. 

C. Shock-wave stability 

In general the R-H curve is not so simple as that 
shown in Fig. 3. A more common type for a solid has a 
cusp where elastic failure occurs, and a solid which 
fails elastically and also transforms to a new phase 
under pressure has two cusps, as shown in Fig. 4. In 
such a case the simple wave structure of Fig. 2(b) no 
longer applies. Instead the wave may consist of one, 
two, or three shock fronts, each one separating uni
form states, depending on location of cusps and the 
magnitude of P 11 Fig. 5. In that case the jump condi
tions, Eqs. (9)-(11), are written for the ith shock: 

p; _p;-l = (U! - U!-l)(U! - U!-1) / V i _1 , 

1 - V j / V 1-1 = (U! - U;-l )/ (U! - U!-l), 

E j -E j _ 1 = (p!+p!-1)(Vj_1 - V j )/ 2, 

(23) 

(24) 

(25) 

where p;, V I, U!, and E I are values of state variables 
behind the shock; p!-l, Vj_v U!-l, andEj_1arevalues 
ahead of it; and U! is its velocity of propagation. 
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FIG. 4. R-H curve centered at (Po. Vol for a solid which fails 
elastically at A and transforms to a new phase starting at B. 

Division of the shock wave into multiple waves hinges 
on questions of stability. Whether or not a given shock 
wave configuration is stable can be simply expressed by 
determining whether following shock waves will over
take those in front (Rice et al., 1958). For example, in 
Fig. 6 are represented two shock waves in sequence. 
The leading shock Sl is traveling with speed U~l) relative 
to the material ahead of it, which is at rest. Material 
between Sl and S2 is compressed to specific volume V1 
and accelerated to particle velocity U~l). With respect 
to this material the first shock speed is Ui1)-U~1). With 
respect to this same material the second shock has 
speed ui2) - U~l). H ui2) - U~l)< U~l) - U~ll, the second 
shock falls continually farther behind the firs t shock, 
and the two-shock system is stable. H the inequality is 
reversed, the second shock overtakes the first, forming 
a single stable shock. 

From Eqs. (9) and (10) the equation for shock propa
gation speed is obtained 

(U! _U!-1)2 =V~_l(P! _p;-1)/ (Vj_1 - VI) 

also 

(26) 

(27) 

Applying these equations to the two shocks of Fig. 6, we 
see that the double shock 'is stable if 

(28) 
p(2)_p(l) p(l)_p 

x x < % 0 

V 1 -V2 VO-V1 ' 

ui 
s 

i 
px i - 1 

Px 

u i i - 1 
P Up 

Vi Vi -1 

Ei Ei - 1 

Eli 

, FIG. 5. Parameters of a shock preceded by moving material. 
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FIG. 6. Double shock configuration. 
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To see the meaning of this inequality, consider the 
(Px, V) curve shown in Fig. 7 and suppose that the final 
shock state (p£2) , V2) of Fig. 6 is at B. The negative 
slope of chord AB is given by the Ihs of Inequality (28); 
that of OA is given by the rhs. Since OA is steeper than 
AB, Inequality (28) is satisfied and a double shock to 
B, with break atA, is stable. Chords like OA andAB of Fig. 
7 which connect initial and final states are sometimes 
called "Rayleigh lines." If the driving pressure p~2} lies 
between 0 and A or above C, a single shock is stable. 
If it lies between A and C, a double s hock is stable. 

The shock stability problem can be couched more fun
damentally in terms of the curvature of isentropes for 
a fluid medium (Bethe, 1942; Duvall, 1962) . If 

(a 2p /a V2). < 0 

in some region, then there exist initial and final states 
for which a single shock wave is not stable. The gen
eral theory of stability is complicated (Fowle's, 1976), 
but Inequality (28) is an adequate rule for practical ex
perimental purposes. 

D. Transformation thermodynamics 

Gibbs (1925) was among the earliest thermodynami
cists to point out the utility of geometric representations 
in thermodynamics. Such representations are particu
larly appropriate for discussion of shock phenomena 
since many important qualitative aspects of shock-wave 
representation are related to topological features of 
equation of state surfaces, without reference to particu
lar analytical forms or numerical values. Some equi
librium relations pertaining to shock-induced phase 
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FIG. 7. Stability considerations for a double shock. 
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transformations are described in this section. 
Consider only a material that retains its chemical 

identity but can exist in two distinguishable physical 
forms, e.g., red and black phosphorus. Consider 'fur
ther that stress is limited to hydrostatic pressure. 
Then there exists a Gibbs function for each phase 

Gj(P,T)=Ej-TSj+PV j , i=1,2, (29) 

where Sj is specific entropy for phase i. The high-den
sity phase will be referred to as "phase 2" throughout 
this paper. 

Equations (29) represent two surfaces in a three-di
mensional space with coordinates G ,P, T , where G =G 1 

for phase 1 and G2 for phase 2. Transition between 
phases occurs where the two surfaces are in contact. 
If they intersect, the transition is first order and the 
Clausius-Clapeyron equation is the differential equation 
of the curve of intersection projected on the P -T plane 

(30) 

The discontinuities in V and S arise from their identity 
as derivatives of G 

v=aG / ap, s = -aG / aT, 

where the underlying surface represents the equilibrium 
state. This is illustrated in Fig. 8, where G1(P, To) and 
G2 (P, T o) are shown. G(P, To) is the curve ABC. 

If the two surfaces do not intersect, but are tangent 
along a curve, the transition is second order and second 
derivatives of G are discontinuous. Higher-order con
tacts define higher-order transitions, but these are hard 
to detect experimentally (Temperley, 1956). Our pri
mary concern is with first-order transitions, though 
second-order transitions will be discussed briefly in 
Sec. V. 

Discontinuities in V and S define a "mixed phase" re
gion in P - V - T space where phases 1 and 2 coexist. The 
mixed phase region is a cylindrical surface with gen
eratrix normal to the P - T plane. The phase diagram in 
the P-T plane is the projection of this cylinder onto the 
P-T plane. On the cylindrical surface Eq. (30) applies . 
If phase 2 is the high-pressure phase, t.V < 0 and t.S 
may be either negative or positive. In the former case , 
dP / dT> 0; in the latter, dP / dT<O. These two equilib
rium cases are illustrated in Figs. 9 and 11, respect
ively. It can be seen from these figures that both cases 
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FIG. 8. Gibbs functions for a first-order transition. 


