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(17) 

where 

r= c: (:~)y' (18) 

is the Gruneisen ratio. The additional temperature in­
crement at the same volume arising from shock com­
pression is T D - T s, where 

InTD / Ts = LSD dS / Cy . 
So 

(19) 

Entropy, SD, can be expressed as a series in powers of 
the volume compression, '1'/ = (1 - V / Vo): 

SD-S=~1/3_- + ... V3 (B 2P) 
o 12To BV2 0 ' 

(20) 

where the second derivative is evaluated for the initial 
state on the isentrope or the R-H curve. H Cy and r / V 
are assumed constant, Eqs. (17), (19), and (20) can be 
combined to give 

- [ V~1/2 (B 2P) J InTD/ To-ro1/ 1 + 12aToKo BV2 0 + ... , (21) 

where a is the thermal expansion coefficient, Ko is the 
isothermal bulk modulus at (V 0' To) and r 0 has been 
evaluated by Eq. (18). For an R-H curve given by Eq. 
(16), Eq. (21) becomes 

InTD / T o= ro1/[1+ :;0: 1/2+ •.. J. (22) 

Coefficients of 1/2 range from 10 to 100 for a variety of 
solids, so the temperature increment from irreversible 
shock heating is negligible for volume compressions of 
a few percent. 

The problem represented by Figs. 2 and 3 is not re­
alized in practice. Half-spaces do not exist, and uni­
form pressure cannot be instantly applied over a sur­
face. Limitations imposed by real conditions are dis­
cussed in Sec. III. 

C. Shock-wave stability 

In general the R-H curve is not so simple as that 
shown in Fig. 3. A more common type for a solid has a 
cusp where elastic failure occurs, and a solid which 
fails elastically and also transforms to a new phase 
under pressure has two cusps, as shown in Fig. 4. In 
such a case the simple wave structure of Fig. 2(b) no 
longer applies. Instead the wave may consist of one, 
two, or three shock fronts, each one separating uni­
form states, depending on location of cusps and the 
magnitude of P 11 Fig. 5. In that case the jump condi­
tions, Eqs. (9)-(11), are written for the ith shock: 

p; _p;-l = (U! - U!-l)(U! - U!-1) / V i _1 , 

1 - V j / V 1-1 = (U! - U;-l )/ (U! - U!-l), 

E j -E j _ 1 = (p!+p!-1)(Vj_1 - V j )/ 2, 

(23) 

(24) 

(25) 

where p;, V I, U!, and E I are values of state variables 
behind the shock; p!-l, Vj_v U!-l, andEj_1arevalues 
ahead of it; and U! is its velocity of propagation. 
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FIG. 4. R-H curve centered at (Po. Vol for a solid which fails 
elastically at A and transforms to a new phase starting at B. 

Division of the shock wave into multiple waves hinges 
on questions of stability. Whether or not a given shock 
wave configuration is stable can be simply expressed by 
determining whether following shock waves will over­
take those in front (Rice et al., 1958). For example, in 
Fig. 6 are represented two shock waves in sequence. 
The leading shock Sl is traveling with speed U~l) relative 
to the material ahead of it, which is at rest. Material 
between Sl and S2 is compressed to specific volume V1 
and accelerated to particle velocity U~l). With respect 
to this material the first shock speed is Ui1)-U~1). With 
respect to this same material the second shock has 
speed ui2) - U~l). H ui2) - U~l)< U~l) - U~ll, the second 
shock falls continually farther behind the firs t shock, 
and the two-shock system is stable. H the inequality is 
reversed, the second shock overtakes the first, forming 
a single stable shock. 

From Eqs. (9) and (10) the equation for shock propa­
gation speed is obtained 

(U! _U!-1)2 =V~_l(P! _p;-1)/ (Vj_1 - VI) 

also 

(26) 

(27) 

Applying these equations to the two shocks of Fig. 6, we 
see that the double shock 'is stable if 

(28) 
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, FIG. 5. Parameters of a shock preceded by moving material. 
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FIG. 6. Double shock configuration. 
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To see the meaning of this inequality, consider the 
(Px, V) curve shown in Fig. 7 and suppose that the final 
shock state (p£2) , V2) of Fig. 6 is at B. The negative 
slope of chord AB is given by the Ihs of Inequality (28); 
that of OA is given by the rhs. Since OA is steeper than 
AB, Inequality (28) is satisfied and a double shock to 
B, with break atA, is stable. Chords like OA andAB of Fig. 
7 which connect initial and final states are sometimes 
called "Rayleigh lines." If the driving pressure p~2} lies 
between 0 and A or above C, a single shock is stable. 
If it lies between A and C, a double s hock is stable. 

The shock stability problem can be couched more fun­
damentally in terms of the curvature of isentropes for 
a fluid medium (Bethe, 1942; Duvall, 1962) . If 

(a 2p /a V2). < 0 

in some region, then there exist initial and final states 
for which a single shock wave is not stable. The gen­
eral theory of stability is complicated (Fowle's, 1976), 
but Inequality (28) is an adequate rule for practical ex­
perimental purposes. 

D. Transformation thermodynamics 

Gibbs (1925) was among the earliest thermodynami­
cists to point out the utility of geometric representations 
in thermodynamics. Such representations are particu­
larly appropriate for discussion of shock phenomena 
since many important qualitative aspects of shock-wave 
representation are related to topological features of 
equation of state surfaces, without reference to particu­
lar analytical forms or numerical values. Some equi­
librium relations pertaining to shock-induced phase 
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FIG. 7. Stability considerations for a double shock. 
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transformations are described in this section. 
Consider only a material that retains its chemical 

identity but can exist in two distinguishable physical 
forms, e.g., red and black phosphorus. Consider 'fur­
ther that stress is limited to hydrostatic pressure. 
Then there exists a Gibbs function for each phase 

Gj(P,T)=Ej-TSj+PV j , i=1,2, (29) 

where Sj is specific entropy for phase i. The high-den­
sity phase will be referred to as "phase 2" throughout 
this paper. 

Equations (29) represent two surfaces in a three-di­
mensional space with coordinates G ,P, T , where G =G 1 

for phase 1 and G2 for phase 2. Transition between 
phases occurs where the two surfaces are in contact. 
If they intersect, the transition is first order and the 
Clausius-Clapeyron equation is the differential equation 
of the curve of intersection projected on the P -T plane 

(30) 

The discontinuities in V and S arise from their identity 
as derivatives of G 

v=aG / ap, s = -aG / aT, 

where the underlying surface represents the equilibrium 
state. This is illustrated in Fig. 8, where G1(P, To) and 
G2 (P, T o) are shown. G(P, To) is the curve ABC. 

If the two surfaces do not intersect, but are tangent 
along a curve, the transition is second order and second 
derivatives of G are discontinuous. Higher-order con­
tacts define higher-order transitions, but these are hard 
to detect experimentally (Temperley, 1956). Our pri­
mary concern is with first-order transitions, though 
second-order transitions will be discussed briefly in 
Sec. V. 

Discontinuities in V and S define a "mixed phase" re­
gion in P - V - T space where phases 1 and 2 coexist. The 
mixed phase region is a cylindrical surface with gen­
eratrix normal to the P - T plane. The phase diagram in 
the P-T plane is the projection of this cylinder onto the 
P-T plane. On the cylindrical surface Eq. (30) applies . 
If phase 2 is the high-pressure phase, t.V < 0 and t.S 
may be either negative or positive. In the former case , 
dP / dT> 0; in the latter, dP / dT<O. These two equilib­
rium cases are illustrated in Figs. 9 and 11, respect­
ively. It can be seen from these figures that both cases 
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FIG. 8. Gibbs functions for a first-order transition. 


